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Preface 

 
 

Mathematics is so complicated that we should be crystal clear aware of the 

way we approach it. If we use mathematics as a tool, we shouldn’t disappear 
among the equations by forgetting our aim. And if we want to make 
mathematics, we shouldn’t be anxious weather it will be useful or not.   

 
After investigating Laplace transforms and its applications, especially 

applications in electric circuit analysis, it is understood that there are tree steps 
in the development of the subject.  

The first one is purely mathematical approach which we are deeply 

interested in definitions, theorems, and proofs. 
 
The second step is a kind of transient step which easily lead us to third one. 

In this step, electric circuit analysis forces us to look for a mathematical tool to 
solve integro-differential equations which explain the behavior of the circuits. 

 
And in the third step, we develop an s- domain based circuit analysis 

concept, seeing the fact that we are doing the same things during the solution of 

integro-differential equations. After this development, forgetting the theory of 
Laplace transforms will not cause us to fail in reaching to a solution in our 
electrical analysis problem. 

 
This book is based on an undergraduate work.  
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Biography of Pierre-Simon Laplace 

 

 Pierre-Simon Laplace's father, Pierre Laplace, was comfortably well off 

in the cider trade. Laplace's mother, Marie-Anne Sochon, came from a fairly 

prosperous farming family who owned land at Tourgéville. Many accounts 

of Laplace say his family were 'poor farming people' or 'peasant farmers' but 

these seem to be rather inaccurate although there is little evidence of 

academic achievement except for an uncle who is thought to have been a 

secondary school teacher of mathematics. This is stated in [1] in these terms:-  

There is little record of intellectual distinction in the family beyond what was to be 

expected of the cultivated provincial bourgeoisie and the minor gentry.  

 Laplace attended a Benedictine priory school in Beaumont-en-Auge, as a day pupil, between 

the ages of 7 and 16. His father expected him to make a career in the Church and indeed either the 

Church or the army were the usual destinations of pupils at the priory school. At the age of 16 

Laplace entered Caen University. As he was still intending to enter the Church, he enrolled to 

study theology. However, during his two years at the University of Caen, Laplace discovered his 

mathematical talents and his love of the subject. Credit for this must go largely to two teachers of 

mathematics at Caen, C Gadbled and P Le Canu of whom little is known except that they realised 

Laplace's great mathematical potential.  

 

Once he knew that mathematics was to be his subject, Laplace left Caen without taking his 

degree, and went to Paris. He took with him a letter of introduction to d'Alembert from Le Canu, 

his teacher at Caen. Although Laplace was only 19 years old when he arrived in Paris he quickly 

impressed d'Alembert. Not only did d'Alembert begin to direct Laplace's mathematical studies, he 

also tried to find him a position to earn enough money to support himself in Paris. Finding a 

position for such a talented young man did not prove hard, and Laplace was soon appointed as 

professor of mathematics at the Ecole Militaire. 
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Historical Summary of Laplace Transforms 

 Integral Transforms date back to the work of Leonard Euler (1763 and 1769), who considered 

them essentially in the form of the inverse Laplace transform in solving second-order, linear 

differential equations. Even Laplace in his great work, Theorie analytique des probabilites 

(1812), credits Euler with  introducing integral transforms. It is Spitzer (1878) who attached the 

name of Laplace to the expression
 
 

 
b

a

sx dssey )(  

employed by Euler. In this form it is substituted into the differential equation where y is the 

unknown function of the variable x.
  

 In the late 19th century, the Laplace transform was extended to its complex form by Poincare 

and Picherle, rediscovered by Petzval, and extended to two variables by Picard, with further 

investigations conducted by Abel and many others.
  

 The first application of the modern Laplace transform occurs in the work of Bateman(1910), 

who transforms equations arising from Rutherford's work on radioactive decay 
 

 

P
dt

dP
i  

by setting 
 

 





0

)()( dttPexp xt
 

and obtaining the transformed equation. Bernstein (1920) used the expression
 




 
0

)()( duuesf su
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calling it the Laplace transformation, in his work on theta functions. The modern approach was 

given particular impetus by Doetsch in the 1920s and 30s; he applied the Laplace transform to 

differential, integral and integro-differential equations. This body of work culminated in his 

foundational 1937 text, Theorie und Anwendungen der Laplace Transformation.
  

 No account of the Laplace transformation would be complete without mention of the work of 

Oliver Heaviside, who produced (mainly in the context of electrical engineering) a vast body of 

what is termed the "operational calculus". This material is scattered throughout his three volumes, 

Electromagnetic Theory (1894, 1899, 1912), and bears many similarities to the Laplace transform 

method. Although Heaviside's calculus was not entirely rigorous, it did find favor with electrical 

engineers as a useful technique for solving their problems. Considerable research went into trying 

the make the Heaviside calculus rigouros and connecting it with the Laplace transform. One such 

effort was that of Bromwich, who, among others, discovered the inverse transform
 







i

i

is dssxe
i

tX



)(

2

1
)(  

for y lying to the right of all the singularities of the function s.  

 

Basic Idea About Laplace Transforms 

  The Laplace transform is a wonderful tool for solving ordinary and partial differential 

equations and has enjoyed much success in this realm.  

 Ordinary and partial differential equations describe the way certain quantities vary with time, 

such as the current in an electrical circuit, the oscillations of a vibrating membrane, or the flow of 

heat through an insulated conductor. These equations are generally coupled with initial conditions 

that describe the state of the system at time t=0. 

 Laplace transforms literally transform the original differential equation into an elementary 

algebraic expression. This algebraic equation can then simply be transformed once again, into the 

solution of the original problem. This technique is known as the Laplace transform method. 
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 The process of solution consists of three main steps: 

1) The given 'hard' problem is transformed into a 'simple' equation which is called subsidiary 

equation. 

2) The subsidiary equation is solved by purely algebraic manipulations. 

3) The solution of subsidiary equation is transformed back to obtain the solution of the given 

problem. 

 In this way Laplace transforms reduce the problem of solving a differential equation to an 

algebraic problem. The third step is made easier by tables, whose role similar to that of integral 

tables in integration. 

 The switching operation of calculus to algebraic operations on transforms is called operational 

calculus, a very important area of applied mathematics, and the Laplace transform method is 

practically the most important method for this purpose. 

 

 

 

 

 

  

 

 

 

 



11 

 

Definition 

 

 Let
 
  f(t)  be a given function that is defined for all   ste   .We multiply   f(t) by 

ste   and 

integrate with respect to t from zero to infinity.Then, if the resulting integral exists (that is, has 

some finite value), it is a function of s, say, F(s): 






0

)()( dttfesF st  

 This function F(s) of the variable s is called the Laplace Transform of the original function 

f(t), and will be denoted by L{ f }.Thus, 






0

)()}({)( dttfetfLsF st
 

Examples 
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 Now let’s find the Laplace transform of this function. 
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 So, we have to use integration by parts. Then, 
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Using integration by parts, 
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So, we have again an integral to solve with integration by parts. 
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Existence Theorem 

 

 Let f(t) be a function that is piecewise continues on every finite interval on the range of 0t   

and satisfies  

tMetf |)(|  

 

 For all  0t and for some constants   and M. Then the Laplace transform of f(t) exists for all 

s  
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Change of scale: 
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Laplace of Derivative 

 

Now, we discuss and apply the most crucial property of Laplace transform. Roughly speaking, 

differentiation of function corresponds to the multiplication of transforms by s, and integration of 
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functions corresponds to the division of transforms by s. Hence, the Laplace transform replaces 

operations of calculus by operations of algebra on transforms. This is Laplace’s basic idea, for 

which we should admire him. 

 

Laplace transform of the derivative of f(t) 

 

Suppose that f(t) is continuous for all t>=0, satisfies existence theorem, for some  and M, and 

has a derivative f(t) that is piecewise continuous on every finite interval in the range 0t . Then 

the Laplace transform of the derivative f(t) exists when s>, and  

 

)0(}{}'{ ffsLfL   

 

 

 

 

Laplace transform of the derivative of any order n 

 

Let f(t) and its derivatives f(t), f (t), …,  )()1( tf n  be continuous functions for all t>=0, 

satisfying existence theorem, for some  and M, and let the derivative  )()( tf n  be piecewise 

continuous on every finite interval in the range 0t . Then the Laplace transform of )()( tf n  

exists when s>, and is given by 

)0()0()0(...)0()0()()}({ 12132'21   nnnnnnn ffsfsfsfssFstfL  
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Find the Laplace transform of  ttf cos)(   using derivative formulas. 
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Laplace of Integral 

 

Since differentiation and integration are inverse processes, and since, roughly speaking, 

differentiation of a function corresponds to the multiplication of its transform by s, we expect 

integration of a function to correspond to the division of its transform by s, because division is the 

inverse operation of multiplication: 

Integration of f(t) 

 If f(t) is piecewise continuous and satisfies an inequality of the form 
tMetf |)(|

(Existence of Laplace Transforms) for some   and M 

    ss
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t

o
  ,0   
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 This equation has a useful companion, which we obtain by writing   
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,interchanging the two sides and taking the inverse transform on both sides. Then 
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Example 1: 
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From this and integration of Laplace we obtain the answer 
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Example 2:  If we expand the preceding example 
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Applying integration of Laplace formula to the result we obtained above, the solution is 
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Multiplication by t 

 

It can be shown that if f(t) satisfies the conditions of existence theorem the derivative of its 

transform with respect to s can be obtained by differentiating under the integral sign with respect 

to s. 





0

)([)(' dtttfesF st
 

Consequently,  
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Differentiation of the transform of a function corresponds to the multiplication of the function 

by –t.  

Generally we can say 

n

n
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Now, using shifting property  
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Another approach to this problem can be using shifting property first. 
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Now, using the formula 
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Integration of Transforms (Division by t) 

 
 Similarly, if f(t) satisfies the conditions of the existence theorem and the limit of f(t)/t. as t 

approaches 0 from the right, exists, then 
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in this manner, integration of the transform of a function f(t) corresponds to the division of f(t) by 

t. Equivalently,  
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In fact, from the definition it follows that  
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and it can be shown  that under the above assumption we may reverse the order of integration, 

that is, 
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Example 2: Integration of transforms 

Find the inverse transform of the function 
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Solution. By differentiation,  
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where the last equality can be readily verified by direct calculation. This is our present F(s). It is 

the derivative of the given function (times –1), so that the later is the integral of F(s) from s to . 

We obtain 
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 This function satisfies the conditions under which (1) holds. Therefore, 
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Inverse Laplace Transforms 
  

Usage of Table  

 

 In fact, we can say usage of table to find the inverse Laplace of a function  means 
guessing  whose Laplace is that function. Inverse Laplace transforms of lots of functions 
exist on tables. After making some manipulations you  get the forms in tables and then you 
can directly see the solution. 
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Partial Fractions Method 

 

Partial Fractions are needed to obtain the solution )}({)( 1 tfLty  of a problem from the solution 

Y(s) of the subsidiary equation (we will talk about later) because Y usually comes out as a quotient 

of two polynomials., 
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sY    

and the inverse of a partial fraction P is easy to get from table and the first shifting theorem. 

Now, we will solve two simple examples. In fact, partial fractions is a very detailed subject.  
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Here we can use a practical method. 
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In most circuit analysis problems, four useful transform pairs will be enough to reach to the 

solution. This can be summarized in a table. 

 

Nature of Roots F(s) )(tf  

Distinct Real 
as

K


 )(tuKe at  

Repeated Real 2)( as

K


 )(tuKte at  

Distinct Complex 
 js

K

js

K






*

 )()cos(||2 tuteK t    

Repeated Complex 2

*

2 )()(  js

K

js

K





 )()cos(||2 tuteKt t    

Note: In pairs 1 and 2, K is a real quantity, whereas in pairs 3 and 4, is the complex quantity |K|. 
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Residue Method 
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Heaviside Formula 
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Convolution 

 

Another important general property of the Laplace transform has to do with products of 

transforms. It often happens that we are given two transforms F(s) and G(s) and whose inverses 

f(t) and g(t) we know, and we would like to calculate the inverse of the product H(s)=F(s)G(s) 

from those known inverses f(t) and g(t). This inverse h(t) is written (f*g)(t), which is a standard 

notation., and is called the convolution of f and g. How can we find h from f and g? This is stated 

in the convolution theorem. Since the situation and task just described arise quite often in 

applications, this theorem is considerable practical importance. 

 

Convolution Theorem 

 

 Let f(t) and g(t) satisfy the hypothesis of existence theorem. Then the product of their 

transforms F(s)=L{f(t)} and G(s)=L{g(t)} is the transform H(s)=L{h(t)} of the convolution if f(t) 

and g(t), written L{f*g(t)} and defined by 

 
t

dtgftgfth
0

)()()(*)(   

 

Example 1: 

Using convolution let’s find the inverse h(t) of  
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Example 2: 

 1/s2  has the inverse t and 1/s had the inverse 1, and the convolution theorem confirms that  
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has the inverse 

 
t t
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Example 3: 

Let  
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 Using the convolution theorem and integrating by parts, we get the answer. 
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Differential Equations, Initial Value Problems 

 

 We  consider an initial value problem    

)(''' trbyayy  ,       My )0( ,      Ny )0('  

with constant a and b. Here r(t) is the input (driving force) applied to the system and y(t) is the output 

(response of the system). In Laplace method there are three steps. 

1st Step. Making a Laplace transform in both sides of the equation. This gives: 

 

    )()0()0(')0(2 sRbYysYaysyYs   

 

and is called the subsidiary equation. 

Collecting Y terms we have  
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2nd Step. Division by and use of the so-called transfer function 

 

bass
Q

s



2

1
 

gives as the solution of the subsidiary equation 

  )()()()0(')0()()( sQsRsQyyyssY   

if y(0)=y’(0)=0, this simply Y=RQ; thus Q is the quotient  

 

)(

)(

inputL

outputL

S

Y
Q   

 

and this explains the name of Q. Note that Q depends only on a and b, but neither on r(t) nor on the initial 

conditions. 
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3rd Step. We reduce   )()()()0(')0()()( sQsRsQyyyssY   equation (usually by partial fractions, as 

in integral calculus) to a sum of terms whose inverses can be found from the table, so that the solution 

}{)( 1 YLty   of  

the differential equation )(''' trbyayy      is obtained. 

 

Example: 

Let’s solve the differential equation 

tyy ''  ,  1)0(',1)0(  yy  

1st Step: We use Laplace transform get the subsidiary equation  
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3rd Step: We take inverse Laplace transform of both sides of the equation. 

 

ttetyYL t  sinh)()(1
 

 

 

 

 

 

 

 

 



37 

 

The diagram summarizes the approach. 

 

 

t-space  s-space 

 

Given Problem 
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Unit Step Function  

 

 By definition )( atu   is 0 for 0t , has a jump of size 1 at at   (where we can leave it 

undefined) and is as for at   


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atif

atif
atu

   1,

   ,0 
)(  

 

 

If we use MathCad, 

   

Notice that the symbol for unit step function in MathCad is  . 

 Unit step function is also called Heaviside function. We can use unit step function to write f(t) 
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in the form )()( atuatf  , that is  










atatf

at
atuatf

 if   ),(

 if   ,0
)()(  

Let’s take an example. f(t)=cost for t>0. And the curve 

)2()2cos()2()2(  tuttutf  



39 

 

obtained by shifting it 2 units to the right. For 2 at ,  this function is zero because u(t-2) has 

this property. 

 

Laplace of Unit-Step Function 

  

 If )()}({ sFtfL  , then 

)()}()({ sFeatuatfL as  (1) 

 Taking the inverse transform on both sides of this equation and interchanging side we obtain 

the companion formula 

)()()}({1 atuatfsFeL as   

 Proof  of Second Shifting Theorem: 

 From the definition we have 

dfedfeesFe assasas )()()(
0

)(

0
 







   

Substituting  ta   int the integral, we obtain  

dtatfesFe
a

stas )()(  



 

We can write this as an integral from zero to infinity if we make sure that the integrand is zero 

for all t from 0 to a. We may easily accomplish this by multiplying the present integrand by the 

step function u(t-a), thereby completing the proof.  
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 )}()({)()()(
0

atuatfLdtatuatfesFe stas  



 

In fact, we should see the transform of unit-step function as well. Directly it is: 

s

e
atuL

as

 )}({  

This formula follows directly from the definition. 
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Example 1: 

 Find the Laplace transform of the following function. 

 

 

Solution: 

By analyzing the graphic we can say 
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Example 2: 

Find the Laplace transform of the following function. 

2
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Solution: 

From the graphic we can say 

s

e

s

e

s

e

s

e

s

e

s

e

s

e

s
tfL
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







 

 

 

Dirac’s Delta Function 

 

 Phenomena of an impulsive nature, such as the action of very large forces (or voltages) over 

very short intervals of time, are of great practical interest, since they arise in various practical 

applications. This situation occurs, for instance, when a tennis ball is hit, a system is given a blow 

by a hammer, an airplane makes a hard landing, a ship is hit by a high single wave, and so on. Our 

present goal is to solve problems involving short impulses by Laplace transforms. 

 In mechanics, the impulse of a force f(t) over a time interval, say, kata   

is defined to be the integral of f(t) from a to a+k . 

 The analog for an electric circuit is the integral of the electromotive force applied to the 

circuit, integrated from a to a+k. Of particular practical interest is the case of a very short k (and 
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its limit 0k ), that is, the impulse of a force acting only for an instant. To handle the case, we 

consider the function 












otherwise

kataif
ktf k

      0

      
1

)(  

 

Its impulse kI  is 1, since the integral evidently gives the area of the rectangle. 

1
1

)(
0 




ka

a
kk dt

k
dttfI  

We can represent this function in terms of two unit step functions.  

 ))(()(
1

)( katuatu
k

tf k   

Recalling the Laplace transform of unit-step function, we obtain the Laplace transform 

 
ks

e
eee

ks
tfL

ska
asskaas

k

)(
)( 1

)(
1

)(


 
  

The limit of this function as k goes to 0 is denoted by )( at   

and is called the Dirac delta function (sometimes the unit impulse function). 

 Now, let’ turn to the following equation again. 

 
ks

e
eee

ks
tfL

ska
asskaas

k

)(
)( 1

)(
1

)(


 
  

The quotient in this equation has the limit 1 as k goes to 0, as follows by l’Hospital’s 

rule.(Differentiate the numerator and the denominator at the same time with respect to k) 

Thus, 

aseatL  )}({  

We note that Dirac delta function is not a function in the ordinary sense as used in calculus, 

but a so-called generalized function. 







 


0

1)(  and       
    0

     
)( dtat

otherwise

atif
at   
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But an ordinary function which is everywhere 0 except at a single point must have the integral 

0. Nevertheless, in impulse problems it is convenient to operate on Dirac delta function as if it 

were an ordinary function.  

 

Example: Response of a damped vibrating system to a unit impulse.  

Determine the response of a damped mass-spring system governed by 

)(2'3'' atyyy   ,      y(0)=0,  y’(0)=0 

Thus the system is initially at rest and the time t=a is suddenly given a sharp hammerblow.  

Solution: 

Taking Laplace transform we obtain 

aseYsYYs  232  

Solving for Y, we have 

asesFsY  )()( , where 
2

1

1

1

)2)(1(

1
)(





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


ssss
sF  

Taking the inverse transform we obtain 

tt eetf 2)(   . 

 

Hence by the second shifting theorem we have 
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The Capacitor 

 
 The current through capacitor is proportional to the rate at which the voltage across the 

capacitor varies with time, or, mathematically, 

dt

dv
Ci   

 

 This gives the capacitor current as a function of the capacitor voltage. Expressing the 

voltage as a function of current is also useful. To do so, 

)(
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

  

 

 We can derive the power and energy relationships for the capacitor. From the definition of 

power 















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tvidt
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dt
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Combining the definition of energy with the first power equation above 
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2
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1
Cvw

vdvCdw

Cvdvdw

dt

dv
Cv

dt

dw
p

v

o

w










 

 

 

 

Example: The voltage pulse described by the following equation is impressed across the 

terminals of a 0.5uF capacitor. 

.t1      ,  4)(

;1t0              ,  4)(

0;      t          ,0)(

)1( 





 Vetv

Vttv

tv

t

 

 

 Now, we will derive the expressions for the capacitor current, power, and energy and 

sketch the graphs. 

 First of all, if we sketch the voltage graph using MathCad we get the following result. 

Here we used unit step function to express all the intervals in one step. 

 

v t( ) 4 t  t( )  t 1( )( ) 4 e
t 1( )  t 1( )

v t( )

1

t

0 2 4 6
0

2

4

 
 

 
a)   Using the following formula we can derive the current equation from voltage equation. 
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dt

dv
Cti )(  

 














tr  μA      foe
dt

)ed(
).(

dt

dv
Ci(t)

t for  μA        μF.
dt

t)d(
).(

dt

dv
Ci(t)

r t        fo                                                                      i(t)

)(t
)(t
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4
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00

1
1

6
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And the graph of this current is seen below. 

i t( ) 2  t( )  t 1( )( ) 2 e
t 1( )  t 1( )

i t( )

t

0 2 4 6

2

0

2

 
 

 

b) Now let’s find the power equation. If we remember the formula 

dt

dv
Cvvip  ,  

we can easily derive the power. 

 







 tμW   for e)e)(e(p

t    for           W         tti(t)tp

 for t                                                         p

)(t)(t)-(t- 1824

108244

0  0

1211

  

 

So, the power graph: 
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c) And the energy equation can be derived from the following equation. 

2

2

1
Cvw   
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 Finally, the energy graph is  
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2 t 1( )
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 Energy is being stored in the capacitor whenever the power is positive. Hence energy is being 

stored in the interval 0 to 1 s. 

 Energy is being delivered by the capacitor whenever is the power is negative. Thus energy is 

being delivered for all t greater than 1 s. 

 

 

 

 

 

 

 

 

Inductor 
 

 A current change through an inductor results in a voltage on the inductor and this voltage is 

given by 

dt

di
Lv   

 

v is measured in volts, L in henrys, I in amperes, and t in seconds. 

 

Current in an Inductor in Terms of Voltage 
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
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In many practical applications to is zero so the equation becomes 

 

)0(
1

)(
0

ivd
L

ti
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Power in an Inductor 

 

dt

di
Lip
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



 

 

 voltageof in termscurrent   theexpress alsocan  We  

 


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
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L
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 But the first equation is most useful in expressing the energy stored in the inductor. 

 

Energy in an Inductor 

  

Power is the time rate of expending energy, so 

 

 

2

00

2

1
Liw

ydyLdx

Lididw

dt

di
Li

dt

dw
p

iw










 

 We use different symbols of integration to avoid confusion with the limits placed on the 

integrals. The energy is in joules when inductance is in henrys and current is in amperes. 

 

Example: 
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 The independent current source in the circuit generates zero current for t<0 and a pulse 
tteti 510)(    t>0. 

a) Sketch the current waveform 

b) At what instant of time is the current maximum? 

c) Express the voltage across the terminals of the 100 mH inductor as a function of time. 

d) Sketch the voltage waveform 

e) At what instant of time does the voltage change polarity? 

f) Find the power equation and sketch the power waveform. 

 

 
 

 

 

 

 

 

 

a) The current waveform is shown below, which was obtained using MathCad.  
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b) If we take the derivative of i(t) and making what we get equal to zero, we find  the 

maximum of the current. 

st
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      c) 
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                         0,0   0 V, )51()51)(10)(1.0(L 55   tvttete
dt

di
v tt

 

 d)   Using MathCad, if we sketch  )51()( 5 tetv t   we get the following result. 
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      e) If we notice, we see that at  t=0.2 s the voltage changes polarity.  This is the instant when 

current is maximum.  

 

 

 

 

 

   f)  W5010)().()( 10210 tt ettetvtitp    
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Series RLC Circuit 

 

 
 In the RLC circuit in the figure above, the voltage drops across the inductor, resistor, and 

capacitor are given by  
dt

di
L , Ri , and 

t

di
C

0

)(
1

  

 Kirchhoff’s voltage law states that the sum of voltage drops across the individual components 

equals the impressed voltage, E(t). So, 

)()(
1

L
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tEdi
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dt
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    
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t

o

ditQ  )()(  (the charge of the condenser), and 
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i   we can write 
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Qd
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So, this is the basis for this kind of electrical problems. 
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SECTION 3 
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Laplace Transforms in Electric Circuit Analysis 

 

 In this section, we will see how we face integro-differential equations in electric circuit 

analysis and how we will explain in examples how we solve those equations using Laplace 

transforms. In fact, solving those equations doesn’t require a deep information about Laplace 

transforms. Having an idea about basic formulas would be enough. Interestingly, we will not need 

even those formulas in the last section to solve those problems. 

 

 

Example 1: Finding general current equation for  series  RL circuit with a constant E 

 

 Let's take a look to the circuit seen below. We can easily write its voltage equation through 

Kirchhoff laws. And if we want to see its current equation, or in other words, if we want to see the 
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behavior of current in this circuit in a mathematical way, the following mathematical operations 

will lead us to the answer.  

 
 

iR
dt

di
E  L  

Take the Laplace transform of both sides of this equation. 

   
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A and B are found in the following way. 
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Example 2: General Current Equation in series RL circuit with a varying Eosinwt voltage  

 

 Suppose that the current i in an electrical circuit 

satisfies 

 

tERi
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where L,R,Eo and w constants. Find i(t) for t>0 if i(0)=0. Taking the Laplace transform 
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and we find that 
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Example 3: Finding the General Current Equation in series LC circuit 

 

Suppose that the current i in the electrical circuit beside  
 

satisfies  
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where L, C and E are positive constants, i(0)=0. Then  
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 So, setting some values we can see the current behavior graphically. Let’s see it theoretically 

in MathCad first and then compare the result with the one we obtained in PSpice.  

 
The circuit in PSpice is the following one. 

 
 

And the current through inductor is seen below.  
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Example 4: Response of an RC-circuit to a single square wave  
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The equation of the circuit is  
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where v(t) can be represented in terms of two unit step functions. 
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If we take Laplace transform of both sides of the equation 
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Now, using inverse Laplace transform we can find i(t). 
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If we remember that 
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Verifying the mathematical result using PSpice. 

 

 

           
 

 

 This is our circuit in PSpice. At first, we measure the input signal by putting the ground next 

to   impulse generator. The input signal is seen on the right side. 

 

 

 

          

 So now, we are ready to measure the output signal. We change the place of the ground and get 

the response of the circuit to this input signal. 
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Example 5: Find voltage and current equations in R series to parallel LC circuit. 

 

 
 

All the initial currents in this circuit is zero at t=0.  

-Derive the integro differential equation that governs the behavior of the circuit. 

-Show that  
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-Find Vo(t) and io(t)  for t>0 for the following values. 

V=35 V, R=5Kohm, L=200mH, C=0.1uF  

and plot the graph for those values in MathCad. 

-Plot the graph of the circuit in PSpice and see if they are in accordance with those in MathCad. 

 

-Derive the integro differential equation that governs the behavior of the circuit. 

If we assume that the total current which flows through R is ‘i’ 
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 -Find the Laplace transform of voltage equation. 

 

Find output voltage equation for the following values and plot the graph for those values in MathCad.. 

 First we write v(s) for the specified values. Then following Symbolics->Transform->Inverse 

Laplace combination (make sure  that the cursor is next to 's' during this operation) we get the 

result in t domain. Then using this result in our Vo(t) function, we plot the graph.
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Plot the voltage graph of the circuit in PSpice and see if it is in accordance with those in MathCad 

 This is our circuit in PSpice with the specified values. So, for the values given, the output 

voltage graph we obtained inPspice  is seen below. And it is total in accordance with what we 

obtained in MathCad in a pure mathematical approach.  

Note: Notice that the value of capacitor is 0.1uF. In Pspice  .1 and 0.1 are the same.  

 

vo(t) of the circuit in PSpice: 
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General Solution for Vo(s) 

 

 Now, we will inverse Laplace this equation. We have to use partial fractions. But we have to 

separate the denominator first. If we find the roots of denominator; 
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We can inverse Laplace the equation now. 

 

 

Find the current Io(s) 

 

 The total voltage is the sum of the voltage on R and on the parallel LC branch. We can 

express total current in terms of two currents. The current which flows through L and the current 

which flows through C 
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Since they are parallel to each other, the voltages on C and L are equal  
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We can transform both sides now. 
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Find inverse Laplace of Io(s) for the given values in MathCad and Plot the graph of io(t) 

 

 

 To remember the values We put the circuit here again. If we calculate Io(s) with those values. 
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Now, let’s plot the graph of io(t) in PSpice. 
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Summary of the Project 

 

So, the basic aim of this project was to learn Laplace Transforms and to get the skill to 

apply them to electric circuit analysis.  

 

Step by step, we tried to reach this aim. First, we discussed the basic mathematical 

properties of Laplace transforms. Then, we tried to remember our electric circuit 

information. And these two different subjects were combined in the second and third 

section of Laplace Transforms. We tried to show the relation of the two with examples. 

And in the solution we followed a very specific way.  

 

This specific way can be explained as follows. 

• Find the mathematical solution 

• See the result of the solution graphically using a computer tool (Like MathCad or 

Mathematica) 

• Draw the circuit in an electric analysis program and find the output experimentally. 

• Compare the results. 
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