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Preface

Mathematics is so complicated that we should be crystal clear aware of the
way we approach it. If we use mathematics as a tool, we shouldn’t disappear
among the equations by forgetting our aim. And if we want to make
mathematics, we shouldn’t be anxious weather it will be useful or not.

After investigating Laplace transforms and its applications, especially
applications in electric circuit analysis, it is understood that there are tree steps
in the development of the subject.

The first one is purely mathematical approach which we are deeply
interested in definitions, theorems, and proofs.

The second step is a kind of transient step which easily lead us to third one.
In this step, electric circuit analysis forces us to look for a mathematical tool to
solve integro-differential equations which explain the behavior of the circuits.

And in the third step, we develop an s- domain based circuit analysis
concept, seeing the fact that we are doing the same things during the solution of
integro-differential equations. After this development, forgetting the theory of
Laplace transforms will not cause us to fail in reaching to a solution in our
electrical analysis problem.

This book is based on an undergraduate work.
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Biography of Pierre-Simon Laplace

Pierre-Simon Laplace's father, Pierre Laplace, was comfortably well off
in the cider trade. Laplace's mother, Marie-Anne Sochon, came from a fairly
prosperous farming family who owned land at Tourgéville. Many accounts
of Laplace say his family were ‘poor farming people' or ‘peasant farmers' but

these seem to be rather inaccurate although there is little evidence of

academic achievement except for an uncle who is thought to have been a
secondary school teacher of mathematics. This is stated in [1] in these terms:-

There is little record of intellectual distinction in the family beyond what was to be
expected of the cultivated provincial bourgeoisie and the minor gentry.

Laplace attended a Benedictine priory school in Beaumont-en-Auge, as a day pupil, between
the ages of 7 and 16. His father expected him to make a career in the Church and indeed either the
Church or the army were the usual destinations of pupils at the priory school. At the age of 16
Laplace entered Caen University. As he was still intending to enter the Church, he enrolled to
study theology. However, during his two years at the University of Caen, Laplace discovered his
mathematical talents and his love of the subject. Credit for this must go largely to two teachers of
mathematics at Caen, C Gadbled and P Le Canu of whom little is known except that they realised
Laplace's great mathematical potential.

Once he knew that mathematics was to be his subject, Laplace left Caen without taking his
degree, and went to Paris. He took with him a letter of introduction to d'Alembert from Le Canu,
his teacher at Caen. Although Laplace was only 19 years old when he arrived in Paris he quickly
impressed d'Alembert. Not only did d'Alembert begin to direct Laplace's mathematical studies, he
also tried to find him a position to earn enough money to support himself in Paris. Finding a
position for such a talented young man did not prove hard, and Laplace was soon appointed as
professor of mathematics at the Ecole Militaire.



Historical Summary of Laplace Transforms

Integral Transforms date back to the work of Leonard Euler (1763 and 1769), who considered
them essentially in the form of the inverse Laplace transform in solving second-order, linear
differential equations. Even Laplace in his great work, Theorie analytique des probabilites
(1812), credits Euler with introducing integral transforms. It is Spitzer (1878) who attached the

name of Laplace to the expression
b
y =_[ e>*d(s)ds

employed by Euler. In this form it is substituted into the differential equation where y is the

unknown function of the variable x.

In the late 19th century, the Laplace transform was extended to its complex form by Poincare
and Picherle, rediscovered by Petzval, and extended to two variables by Picard, with further

investigations conducted by Abel and many others.

The first application of the modern Laplace transform occurs in the work of Bateman(1910),

who transforms equations arising from Rutherford's work on radioactive decay

by setting

p(x) = [ e P(t)dt
and obtaining the transformed equation. Bernstein (1920) used the expression

f(s) = _[Owe‘suq)(u)du



calling it the Laplace transformation, in his work on theta functions. The modern approach was
given particular impetus by Doetsch in the 1920s and 30s; he applied the Laplace transform to
differential, integral and integro-differential equations. This body of work culminated in his
foundational 1937 text, Theorie und Anwendungen der Laplace Transformation.

No account of the Laplace transformation would be complete without mention of the work of
Oliver Heaviside, who produced (mainly in the context of electrical engineering) a vast body of
what is termed the "operational calculus”. This material is scattered throughout his three volumes,
Electromagnetic Theory (1894, 1899, 1912), and bears many similarities to the Laplace transform
method. Although Heaviside's calculus was not entirely rigorous, it did find favor with electrical
engineers as a useful technique for solving their problems. Considerable research went into trying
the make the Heaviside calculus rigouros and connecting it with the Laplace transform. One such

effort was that of Bromwich, who, among others, discovered the inverse transform
1 +ico .
X (t) = — [ e x(s)ds

27 Jr-ie

for y lying to the right of all the singularities of the function s.

Basic Idea About Laplace Transforms

The Laplace transform is a wonderful tool for solving ordinary and partial differential

equations and has enjoyed much success in this realm.

Ordinary and partial differential equations describe the way certain quantities vary with time,
such as the current in an electrical circuit, the oscillations of a vibrating membrane, or the flow of
heat through an insulated conductor. These equations are generally coupled with initial conditions

that describe the state of the system at time t=0.

Laplace transforms literally transform the original differential equation into an elementary
algebraic expression. This algebraic equation can then simply be transformed once again, into the

solution of the original problem. This technique is known as the Laplace transform method.



The process of solution consists of three main steps:

1) The given 'hard' problem is transformed into a 'simple' equation which is called subsidiary

equation.
2) The subsidiary equation is solved by purely algebraic manipulations.

3) The solution of subsidiary equation is transformed back to obtain the solution of the given

problem.

In this way Laplace transforms reduce the problem of solving a differential equation to an
algebraic problem. The third step is made easier by tables, whose role similar to that of integral

tables in integration.

The switching operation of calculus to algebraic operations on transforms is called operational
calculus, a very important area of applied mathematics, and the Laplace transform method is

practically the most important method for this purpose.

10



Definition

Let f(t) be a given function that is defined for all €™ e multiply f(t) by € and

integrate with respect to t from zero to infinity.Then, if the resulting integral exists (that is, has

some finite value), it is a function of s, say, F(s):
F(s) = [e ™ f(t)t
0

This function F(s) of the variable s is called the Laplace Transform of the original function
f(t), and will be denoted by L{ f }.Thus,

o]

F(s)=L{f(t)}= j eSUf (t)dt

0

Examples
Example 1:
L{3="
” T
L= [ e 'dt= lim Lesty o Lot
0 T—owo S 0 S S
Example 2:
1, t>a
f(t)=
® {O, t<a

Now let’s find the Laplace transform of this function.

11



L{f(t)}= cj')e—“ f (t)dt

0]

L{f(t)}= :a'e—st f(t)dt+ Te—st f(t)dt

0 a

a o0
L{f ()} = [~ .0dt+ [e~".1dt

0 a
2 —st o
. o 1/ .
: S a S
a
e—as
L{f()}=
S
Example 3:
L{coshat}="
L{coshat}= [ e coshatdt
at —at
coshat=2_*+¢
© g ea[+e—at
:IO € t(T)dt
1 © L (-s+a) © _(-s-a)
=5 (et [t nar)
T T
=lim 1( _l e(a_s)t |+Le(—s—a)t |)
T~>oo2 a_S 0 —S_a !
:1(0_ 1 L0+ 1 j
2 a-s —-s—a
_1( 1 1 j_ s
2{s—a s+a) s*’-a’
Example 4:

L{cosat}="

L{cosat} == Ie‘St cosatdt
0

So, we have to use integration by parts. Then,



—se™ =du
cos atdt = dv

1.
—Sinat=v
a

judv = uv—jvdu

< eStsinatT s
Ie‘St cosatdt = lim ———= |+—_[e‘St sin atdt
0 T—o0 a 0 a 0

It can be easily seen that

. e sinatT
lim———| =0
0

T—>o a

Then we have

j e St cos atdt = jie‘St sin atdt
0 0

We have to use integration by parts again.

—st

e > =u

—se St =du

sin atdt = dv
1

——cosat=v
a

judv =uv-— Ivdu =

< s —eStcosat s%
Ie‘St cosatdt =2 - 2 2 Ie‘St cos atdt

0 a a ao

If we call

o0

_[ e Stcosatdt = A
0

then,



2 2

se*'cosat” s S S
A=———F— |- A= -5 A=
a o a a* a
S
A: 2 2
s°+a
So, the result is
o0
L{cos at} = j e * cosatdt = ———
0 s°+a

Example 5:

sin wt, O<t<£

f(t)= @
0, 7 <t
w
lw o0
L(f(t)= [e " sinotdt+e .0dt [e*.0dt=
0 lw

rlw
= je‘St sin wtdt
0

Using integration by parts,
judv = uv—jvdu

sinwt =u
@ COS wtdt = du
e Stdt = dv
1 _
_Lest_y,
s
mlo eStsine i w
= Ie‘St sintdt = ——— > ¢ I Z et cos widt
0 S 0 S

So, we have again an integral to solve with integration by parts.



—st
e cosat —Qje‘“ sin wtdt

j e cos wtdt =—
s s

If we write what we have as a hole now.

. e'sinw w( e coswt w .
fe*“ sinptdt=——— """+ —[—— ——je*“ sin a)tdtj
S S S S
let j e *'sin wtdt = A then
esinwt we'coswt ?
A=— + 5 —— A
S S S
2 —St % —st
w e sinwt e coswt

= m[e“(ssin wt + wcosat)]

So now, we can calculate

7lo

je‘St sin wtdt =
0

o—=2 |y

-1 _ :
(2—2[e St (ssin a)t+a)coswt)]
S“+w
1 | =
=———|¢“ (ssin %ﬂocosﬂ)—eo(ssin O+wcos0)
(s“+w°) w w

[ —sx —sr
:_—1 e 0-w-ow :_—1 -k Y —w
(s? +0?) (s? +w?)

And finally we can say

7lw —Sz

L{fO}= [e™'sinatdt=—"—|1+e
0

s? + @2

15



Existence Theorem

Let f(t) be a function that is piecewise continues on every finite interval on the range of t >0

and satisfies
| f(t) |< Me”

For all t>0and for some constants y and M. Then the Laplace transform of f(t) exists for all

Szy
Properties
Linearity:
L{af (t) +bg(t)} = al{f (t)}+bL{g(t)}
Examples:
1)
L{sin 4t —3cos 7t} = L{sin 4t} - L{3cos 7t}
4 3
52416 s2+49
2)
L{sinh 3t +3cosh5t} = L{sinh 3t}+ L{3cos5t}
4 N 3s
s?-16 s*°-25

16



3)

4)

Shifting Property:

Examples:
1)

2)

L{sin ? 3t + 2cos? 4t} =?

_ 5 1—-cos2x

Sin“ X=——7—
2

2 1+ cos2x

COS*“ X = ———

L{l—c;s Gt}+ L{2(1+;058t)}

- %[L{l} — L{cos 6t}] + L{1} + L{cos 8t}

[1 S } 1 S
- + =+
s s2+36 s s?+64

1
2

L{e* sinh 4t + e*t*} ="
= L{e * sinh 4t} + L{e>'t*}
4 2

= +
(s+2)—16 (s—23)°

L{e* f (t)}= F(s—a)

3

L{e*sin3t}=————
{ } (s—4)*+9

L{e*t?}="?
2

L{tz} = 3_3

L{eZttZ}: 2

(s-2)°

17



3)
L{e* sin 3t}="?

L{sin 3t} = — =
s°+9
at _ 3
L{e™ sin 3t} = —(5_4)2 9
4)
L{e “ (Acos(/) + Bsin( ft)) =?
_ S+a B Ve
(s +a)® + p? (s +a)® + p?
_ A(s+a)
C(s+a)?+ p?
5)

L{e"'(a, +at+..+a,t")}="?

L{e'(a, +at+..+at"}=L{e"'a, +e'at+..+e"a t")}
a a a.n!

=— +—L g+ —
s+1 (s+1) (s+D™

Change of scale:

L{sin3t}="2
Since we know
Lisinty =
tsin £} s +1
Using the formula
Lif(at)=1 F(Ej
a \a
we can say
. 1 1 3
Lsin3t;== =
{ } 3 sJZ s?+9
—| +1
3

Laplace of Derivative

Now, we discuss and apply the most crucial property of Laplace transform. Roughly speaking,

differentiation of function corresponds to the multiplication of transforms by s, and integration of

18



functions corresponds to the division of transforms by s. Hence, the Laplace transform replaces
operations of calculus by operations of algebra on transforms. This is Laplace’s basic idea, for

which we should admire him.

Laplace transform of the derivative of f(t)

Suppose that f(t) is continuous for all t>=0, satisfies existence theorem, for some y and M, and
has a derivative f(t) that is piecewise continuous on every finite interval in the range t >0. Then

the Laplace transform of the derivative f(t) exists when s>y, and

L{f}=sL{f}- f(0)

Laplace transform of the derivative of any order n

Let f(t) and its derivatives f1(t), " (?), ..., f (=) (t) be continuous functions for all t>=0,
satisfying existence theorem, for some y and M, and let the derivative £ (t) be piecewise

continuous on every finite interval in the range t>0. Then the Laplace transform of £ (M ®

exists when s>y, and is given by

L{f"(©)}=5"F(s) =" (0) - s" 2 (0) —...— s2f "*(0) — s*F "2(0) — f "*(0)

Examples
1)
L{(e*)}="
L{f ()} =sF(s)— f(0)
sty S o0
L{(e")}=—, e
__ S -1
s—4
2)

19



L{(cos 4t)"}="
L{f"(t)}=s’F(s)-sf(0)- f'(0)

3

L{(cos 4t)"}=s° —scos0+4sin0= -5
{ I’} s? +16 s? +16
3)
Find the Laplace transform of f (t) = coseat using derivative formulas.
L{coswt}="
(cosawt)' = —sin wt
(cosmt)"= —m” coswt
SO

L{(cos wt)'} = L{—w? cos wt} = s*L{cos wt}—s
— o’ L{cos ot} = s*L{cos wt}—s
s

L{COS a)'[} = - 3
S"+w

Laplace of Integral

Since differentiation and integration are inverse processes, and since, roughly speaking,
differentiation of a function corresponds to the multiplication of its transform by s, we expect
integration of a function to correspond to the division of its transform by s, because division is the
inverse operation of multiplication:

Integration of f(t)

If (t) is piecewise continuous and satisfies an inequality of the form | f (t) |[< Me”

(Existence of Laplace Transforms) for some y and M

L{ﬂf(r)dr}z L{fs(t)}z FS‘) >0, s>

This equation has a useful companion, which we obtain by writing
L{f (O} =F(s)

,interchanging the two sides and taking the inverse transform on both sides. Then

L—l{l F(s)} — [ f(n)dz
S (0]

20



Example 1:

L{f()}= ———5< 1 N L‘l{f n}r="
S(s* +w*)
If we recall that
L_l{%} = iSir\ a)t
S 4+ w w

From this and integration of Laplace we obtain the answer

L™ _ =1j‘tsin a)rdr:i(l—COSa)t)
w °° a)2

s? +w?
Example 2: If we expand the preceding example
1 i
L{f(t)}=————. Find f(b).
{f (O} (52 1 0?) (t)

Applying integration of Laplace formula to the result we obtained above, the solution is

_ 1 1 1 sin wt
Ll{ }z — J.O(l—coswr)drzy[t— j

s?(s? + w?) w

Multiplication by t

It can be shown that if f(t) satisfies the conditions of existence theorem the derivative of its
transform with respect to s can be obtained by differentiating under the integral sign with respect

tos.
FI(s) = eIt (ot
Consequently, O
L (0= —F'(9)

Differentiation of the transform of a function corresponds to the multiplication of the function
by —t.

Generally we can say
" n d"F(s)
L{t" f(t)}=(-1) T

Examples:
1)

21



—4 1652

A ey Ty
2)
2t (s—2)*+9
L{e“'t cosh 3t} =
{e*tcosh 3t} (s—2)7 _9)
3)
L{t*sin 2t} =2
L{t" f ()} = (-D)"F"(s) = (-1)" %
: 2
L{sin 2t} = 7.2
4*(° )
L{t?sin 2t} = (-1)> —S_+4
ds
= %(2(—1)(52 + 4)_2 2s) = _45(52 4 4)_2
= —4(s® +4) 7 +165%(s* + 4)°
—4 16s°
= +
(s*+4)*  (s*+4)°
4)
L{e*tcosh 3t} =?
L{tcosh 3t} = — S
s -9

( s )
=D (52 —9)

:(_1)[(3 —9)—2s j

(s* —9)*
_ (s?+9)
(s* —9)*
Now, using shifting property
_ 2
L{e*'t cosh 3t} = (s 2)2 9 >
((s—2)"-9)

Another approach to this problem can be using shifting property first.

22



L{cosht} =

s% —
L{e? cosht}= #
(s—2)° -9
. s=2
s* —4s-5
Now, using the formula
d"F(s)

" (0} =(D"F(s) = (-D)"

(8572 )
= 1)(32—45—5j

_ (_l)(sz —4s—5—(s—2)(23—4)}

ds"
We have

(s> —4s-5)°
:(_1)52 —4s—-5—(2s® —4s—4s+8)
(s? —4s—5)?
_ —s*+4s+5+2s° —4s—4s+8
- (s? —4s—5)?

s —4s+13  (s-2)°+9
C(s?=45-5)* ((s—2)*-9)°

Integration of Transforms (Division by t)

Similarly, if f(t) satisfies the conditions of the existence theorem and the limit of f(t)/t. as t

approaches 0 from the right, exists, then

fit)y, T
WAL S N TR P
t
s (1)
in this manner, integration of the transform of a function f(t) corresponds to the division of f(t) by
t. Equivalently,

L{jF(u)du}:@.

In fact, from the definition it follows that

23



T F(u)du = T[Te“t f (t)dt}du,

sLO
and it can be shown that under the above assumption we may reverse the order of integration,

that is,
TF(u)du =Ojo Te“tf(t)du dt :Tf(t) Te—“td“ dt
S sLO 0 S

The integral over u on the right equals e U/t when (S> ), and, therefore,
T T f(t f(t
[Fuydu= Ie“t¥dt _ L{¥} s>
S 0

Example 2: Integration of transforms

2
Find the inverse transform of the function IN [1 + COZ j
S

Solution. By differentiation,
2 2
_i.n(lm_):L_E_z s

ds s?2 ) s(s2+w?) s si+w?’

where the last equality can be readily verified by direct calculation. This is our present F(s). It is
the derivative of the given function (times —1), so that the later is the integral of F(s) from s to .
We obtain
1 42 S
f)=L(F)=L {——Zﬁ} =2—-2coswt
S S +w
This function satisfies the conditions under which (1) holds. Therefore,

Ll{ln (1+ ‘;’—EJ} = L—l{f F(u)du} = @
L_l{m (1+ w—j}} _2 (1—cos wt)
S t

Our result is

24



Inverse Laplace Transforms

Usage of Table

In fact, we can say usage of table to find the inverse Laplace of a function means
guessing whose Laplace is that function. Inverse Laplace transforms of lots of functions
exist on tables. After making some manipulations you get the forms in tables and then you
can directly see the solution.

Examples:
1)
L_l{ss:4_232—18}:|__1{%+i3_ 225 B 218 }
S s°+9 S S s°+9 s°+9
L‘l{ss';L4 - 22_18} =5t + 2t> —2c0s3t — 6sin 3t
S s°+9
2)
3
Lt 6 =L _6 =3L" ! = 3e?
2s—3 ( 3) [ 3)
2l s—— S——
2 2
3)
_1{ 32+4s }: 1{ 23 . 24s }IL_l 3 N 4s
9s° +16 9s°+16 9s°+16 , 16 , 16
9s°+—| 9 s +—
9
()
:L—l 3 I 4s :EL_]' +£L_1 4s

25



L‘l{ﬂ} = isin ﬁt +gcosgt

9s2+16) 4 3
4)
L‘l{ 6s—4 }:L‘l{ 6s -4 }:L‘l 6(s—2)+12-4
s —4s5+20 s —4s+4+16 (s—2)% +16
_ L_]_ 6(8 —2 2) + L_]_ 82
(s—2)° +16 (s—2)° +16
= 662! cos 4t + 262! sin 4t
5)

L‘l{ 4s+12 }—L‘l 45+12 | | 4]4s+12+4-4
s% +8s+16 (s+4)2 (s+4)2
_ I_1{4(5 +4) 4} et _ge-ty

(S+4)2

Partial Fractions Method

Partial Fractions are needed to obtain the solution y(t) = L™{f (t)} of a problem from the solution

Y(s) of the subsidiary equation (we will talk about later) because Y usually comes out as a quotient

of two polynomials.,

and the inverse of a partial fraction P is easy to get from table and the first shifting theorem.

Now, we will solve two simple examples. In fact, partial fractions is a very detailed subject.

1)
L s+3 5
(s+)(s-3)|

s+3 A N B
(s+1)(s-3) s+1 s-3
A(s-3)+B(s+1)=s+3

26



3:3:>B:§
2

s=-1= A:—1
2

then

Lt S+3 L -1 N 3
(s+1)(s-3) 2(s+1) 2(s—3)
B O I
2 2
Here we can use a practical method.
We can find A directly by omitting (s+1) in
S+3
(s+1(s-3)
and then for s= -1, which makes s+1 zero
s+3 -1+3 1
s-3 -1-3 2

And for B, omitting s-3 in
s+3
(s+D(s-3)
and setting s=3, which makes s-3 zero we have
s+3_3+3_3_ B
s+1 3+1 2

2)

L71 25_1 :9
(s+1)(s* +1)
2s—-1 A Bs+C

= +
(s+1(s*+1) s+1 s?+1
A(s* +1)+(Bs+C)(s+1) =2s-1

}

27



s=-1= A:—E
2

s:O:>C:1
2
s:1:>B:§
2
then
3S 1
L 2s-1 ) L) -3 2%
L' <—— =1L +
(s+1)(s® +1) 2(s+1)  s*+1

-3 3 s 1

- += +
{2(5 +1) 2(s*+1) 2(s*+1)

3 ., 3 1.
=——e +—cost+—sint
2 2 2

|

In most circuit analysis problems, four useful transform pairs will be enough to reach to the

solution. This can be summarized in a table.

Nature of Roots F(s) f(t)
- K L
Distinct Real — Ke™u(t)
s+a
Repeated Real K Kte *'u(t
epeated Rea (s+a)? e u(t)
K K"

Distinct Complex

+
S+a—jf s+a+|p

2| K |e ™ cos(S+0)u(t)

Repeated Complex

*

K N K
(s+a—jp)" (s+ta+jp)’

2t| K |e™ cos(/ + O)u(t)

Note: In pairs 1 and 2, K is a real quantity, whereas in pairs 3 and 4, is the complex quantity |K|£6.
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Residue Method

L*{F(s)}= f(t) =D residue of e*F(s)atpoles =R, +R, +...+R

Simple Pole:
R, =lim [(s —s,)e” F (s)]
Multiple Pole:
1 d n st
R, = lim DI [(s—s))"e*F(s)]
Examples:
1)
4 s+3 _ 5
(s+D(s—3) '
L 1{ S+3 } R, + R,
(s+1)(s—3)
(%3 1,
(s D(s-3) 2
Rlzlim{(s—3)&eﬂ:§e3t
-3 (s+1)(s-3) 2
L] S*3 g p--let,3e
(s+1)(s—3) 2 2
2)

L1 s+1 _ 5
s(s® +s—6)

LS+l ~R,+R, +R,
s(s“+s—6)

s+1 _ s+1
s(s®*+s—6) s(s—2)(s+23)

n
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3)

4)

: { s+1 Ot} . [
s—————e" |=1lm
50| 5(s—2)(s+3) -0

RZ:Iim{(s—Z) s+1

s+1

s(s—2)(s+3)

s(s—2)(s+3)

1 3.2 2 4

S—H}:R1+R2+R3:——+—e

6 10 15

?

L_l{ZSZ +6S— 4}

s(s + 2)?

I__l{zs2 +6s—4

s(s + 2)?

.| 25 +6s

R, =lim|s = T222%
-0l 5(s+2)

R =fm— 9l (s+2)
52 (2 1)1 ds

= lim KZ + izje‘“ + te“[
s—>—-2 S

}=R1+R2

_4e°t}=—1

, 25° +6s—4
s(s+2)°

25+6—£ﬂ
S

= (2 + %)e‘ﬂ +te (-4 +6+2)

=3 +4te™
R +R,=-1+3e

+4te ™

s+l 1
(s=2)(s+3) 6
e? | = im s+1 2 :iezt
2| §(s+3) 10
et |=lim s+1 e :—Ee
s>-3 5(s—2) 15

=3t
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il
(s—3)*(s-1)2

Ll{ : }:le2
(s-3)%(s-1)2

R, = m 1 {( R — ze‘“}—
s 3(2 Dlds (s=3)°(s-2

R, = lim a4 %es‘ =1lim _—23eSt +#2teSt
>3 ds| (s—1) 3 (5 1) (5-1)

R, = lim _23e3t+ ! ~te® =— 1 e 1te
= (3-1°  (3-1) 4“7y

R, —lim L [( 1y 1 zest}:
-1 (2-1)!ds (s—-3)°(s-1)

RZ:Iimi ! ~e* | =1lim _23e5‘+ L ~te
-1 ds| (s—3) -1 (s —3) (s—3)

R, et
4 4

Lt 21 =R, +R, = P S I
(s=3)°(s-1)2 4 4 4 4

Heaviside Formula

PO)__ A A A A
QE) (-a) (-a) G-a)  (5-a,)

L_l{P(S)} P(a) et | P(a,) pot 4 P(a;) et ...y P(a,) ot

Q(s)) Q (a) Q'(a,) Q') Q'(a,)

1)
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L S+3 _ 5
(s+1)(s-3)|

P(s)=s+3 , Q(s)=(s+1D(s—23)

Q(s)=(5—-3)+(s+1)

Ll{ s+3 }: P(-1) et 4 P(3) ot
(s+D(s-3)) Q'(-D Q'(3)

Lt S+3 P N PR P
(s+1)(s—23) —4 4 2 2

2)
Ll{ 19s + 37 }z?
(s=D(s+D(s+3)
P(s)=19s+37, P(1) =56, P(-1) =18, P(-3) =—20
Q) =(s-D(s+D(s+3)
Q'(s)=(s+1)(s+3) +(s-D[(s+3) + (s +1)]
Q(S)=(s+D(s+3)+(s-1(2s+4)
QM =8,Q(-)=-4, Q(-3)=-8
Lt { 195 + 37 }z P@) o, PCD 1, PEI) a
(s-D(+Y(s+3)) Q@) QI Q'(-3)
1{ 195 + 37 } 56 ., 18 ., -20 4
L =—e'+—e'+—e
(s=D(s+D(s+3) 8 -4 -8
3)

L‘l{ 3s+1 }:?
(s=1)(s*+1)

L_l{L}:L_l{ 35 +1 _}:?
(s=1)(s* +1) (s—1)(s+i)(s—i)
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P(s)=3s+1, P() =4, P(i)=3i+1, P(-i)=-3i+1

and

Q) =(s=D(s+)(s=i)=Q'(s)=(s+i)(s—i)+2s(s-1)
QM=2 QW=2i1(-1)=-2-2i, Q' (-)==-2i(-1-1) =-2+2i
So,

L { 3s+1 }_ P o, PO) g, PEI)

s-1s*+1)) QO Q@) Qi)
=—e + -e" + -e
2 —-2-2i -2+ 2i

Convolution

Another important general property of the Laplace transform has to do with products of
transforms. It often happens that we are given two transforms F(s) and G(s) and whose inverses
f(t) and g(t) we know, and we would like to calculate the inverse of the product H(s)=F(s)G(s)
from those known inverses f(t) and g(t). This inverse h(t) is written (f*g)(t), which is a standard
notation., and is called the convolution of f and g. How can we find h from f and g? This is stated
in the convolution theorem. Since the situation and task just described arise quite often in

applications, this theorem is considerable practical importance.

Convolution Theorem

Let f(t) and g(t) satisfy the hypothesis of existence theorem. Then the product of their
transforms F(s)=L{f(t)} and G(s)=L{g(t)} is the transform H(s)=L{h(t)} of the convolution if f(t)
and g(t), written L{f*g(t)} and defined by

h(t) = f*g(t) = [ f(r)gt—r)dz

Example 1:

Using convolution let’s find the inverse h(t) of
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1 1 1

H(s) = 2 7 2 2
(s +1 (s°+D (s +1)

We know that L™{ } = sin t . By the convolution theorem we get

1

(s? +1)
t

h(t) = L"Y{H (s)} = sin t*sin t = [sin zsin(t - 7)d7
0

:—%j;costdr+%L;cos(Zr—t)dr

=—lcost+lsint
2 2

Example 2:

1/s% has the inverse t and 1/s had the inverse 1, and the convolution theorem confirms that
1 _ [ij[lj
s3 s? s

2

t*lzjzr.ldr:t?

has the inverse

Example 3:
Let
1
H(S)=—5——=
s“(s—a)
Find h(t).

We know that

{3l
S S—a

Using the convolution theorem and integrating by parts, we get the answer.

h() =t*e? = Erea(t_r)dz' —eat J:; e 3%dr

za—lz(eat —at—l)
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Differential Equations, Initial Value Problems

We consider an initial value problem
y'+ay+by=r(t), y©0=M, y(@0=N
with constant a and b. Here r(t) is the input (driving force) applied to the system and y(t) is the output
(response of the system). In Laplace method there are three steps.

1%t Step. Making a Laplace transform in both sides of the equation. This gives:
[s?Y —sy(0) - y'(0)]+a[sY — y(0)]+bY =R(s)

and is called the subsidiary equation.
Collecting Y terms we have

Y (s? +as+b) —sy(0) — y'(0) —ay(0) = R(s)
Y (s? +as+Db) = R(s) + sy(0) + y'(0) + ay(0)

2" Step. Division by and use of the so-called transfer function

_ 1
s’+as+Db

S

gives as the solution of the subsidiary equation
Y(8)=[(s +y)y(0) + ¥ ())(S) + R(S)Q(s)
if y(0)=y’(0)=0, this simply Y=RQ); thus Q is the quotient

o Y _ L(output)
S L(input)

and this explains the name of Q. Note that Q depends only on a and b, but neither on r(t) nor on the initial

conditions.
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34 Step. We reduce Y (s) = [(s +y)y(0) + y'(O)]Q(s) + R(s)Q(s) equation (usually by partial fractions, as

in integral calculus) to a sum of terms whose inverses can be found from the table, so that the solution
y(t) = L {v} of
the differential equation y''+ay'+by =r(t) is obtained.

Example:
Let’s solve the differential equation

y'=y=t, y0)=1y(0)=1
15t Step: We use Laplace transform get the subsidiary equation
1

Y —sy(0) -y (0-Y =3
and collecting Y terms
’ 1
(s°=1Y == +s+1
S

1
s? -1

2"d Step: The transfer function Q = . So,

1 s+1 1
Y=(5+D)Q+—=Q= +
s2 7 s2-1 s%(s?-1)

N O Y
s—-1 (s?2-1 ¢?

379 Step: We take inverse Laplace transform of both sides of the equation.

LM (Y)=y(t)=¢' +sinh t—t
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The diagram summarizes the approach.

t-space

Given Problem

y'-y=t, y0)=1y'(0)=1

Solution of the given problem

y(t) =e' +sinh t —t

s-space

Subsidiary Equation

(s* —1)Y =i2+s+1
S

Solution of the subsidiary Equation

1 1 1

Y:—+ —_—
s-1 s?2-1 §?
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Unit Step Function

By definition u(t—a) is 0 for t <0, has a jump of size 1 at t = a (where we can leave it
undefined) and is as for t > a
0, ift<a

”(t_a):{l, ift>a

If we use MathCad,

f(t) = ®(t) o(t) = P(t- 2)
2 T T T 2 T T T
f(r) o . a(t) o N
-2 | | l -3 l l l
-2 ] 2 -2 ] 2
t t

Notice that the symbol for unit step function in MathCad is @ .

Unit step function is also called Heaviside function. We can use unit step function to write f(t)

£t — O,ift<a
t)= f(t-a),if t>a

in the form f(t—a)u(t—a), thatis

0, ift<a

f“_aw“_mz{fa—m ift>a

Let’s take an example. f(t)=cost for t>0. And the curve
f(t—2u(t—2) =cos(t—2u(t—2)
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obtained by shifting it 2 units to the right. For t <a =2, this function is zero because u(t-2) has

this property.

f(t) = cos(t- 2) P(t- 2)

1] 5 10 15

Laplace of Unit-Step Function

If L{f(t)}=F(s), then
L{f({t—a)ut—a)}=e*F(s) ()

Taking the inverse transform on both sides of this equation and interchanging side we obtain

the companion formula
L e *F(s)}= f(t—a)u(t—a)
Proof of Second Shifting Theorem:
From the definition we have
e F(s)=e [ e~ f(r)dr = [ e "1 (r)d
Substituting 7+ a =t int the integral, we obtain
e F(s) = j:e’“ f(t—a)dt

We can write this as an integral from zero to infinity if we make sure that the integrand is zero
for all t from 0 to a. We may easily accomplish this by multiplying the present integrand by the

step function u(t-a), thereby completing the proof.
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e *F(s) = fe‘“ f(t—a)u(t—a)dt=L{f(t—a)u(t—a)}

In fact, we should see the transform of unit-step function as well. Directly it is:
efas
S

Hu(t-a)}=

This formula follows directly from the definition.

H{u(t-a)}=[ e u(t-a)dt=[ e 0dt + [ e *1dt __le=io

e—St
S a S

Example 1:

Find the Laplace transform of the following function.

ft)
k
. I
a2 b t
Solution:
By analyzing the graphic we can say
0, t<a
f(t)=<k,a<t<b
0, t>b
= f@t)=ku(t—a)—ku(t—b)
ke ke™
L{f ()} = ——
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Example 2:

Find the Laplace transform of the following function.

2 I

Solution:
From the graphic we can say
fO=ut)-ut-D)+u(t-2)-ut-3)+ut—4)—u(t-5+---+u(t—-n)—u(t-(n+1))

-2s -3s —4s —-5s -ns —(n+1)s

e—S

L{f(t)}=%— —+

e e e e € e
— + — +...+

S S S S S S

Dirac’s Delta Function

Phenomena of an impulsive nature, such as the action of very large forces (or voltages) over
very short intervals of time, are of great practical interest, since they arise in various practical
applications. This situation occurs, for instance, when a tennis ball is hit, a system is given a blow
by a hammer, an airplane makes a hard landing, a ship is hit by a high single wave, and so on. Our
present goal is to solve problems involving short impulses by Laplace transforms.

In mechanics, the impulse of a force f(t) over a time interval, say, a<t<a+k
is defined to be the integral of f(t) from a to a+k .

The analog for an electric circuit is the integral of the electromotive force applied to the

circuit, integrated from a to a+k. Of particular practical interest is the case of a very short k (and
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its limit k — 0), that is, the impulse of a force acting only for an instant. To handle the case, we

consider the function

1 .

— if agt<a+k
fk (t) =1k

0 otherwise

Its impulse 1, is 1, since the integral evidently gives the area of the rectangle.
0 a+k 1
=] f®dt=[ dt=1

We can represent this function in terms of two unit step functions.
1
fi(®) = Jut-a)—ut—(@+k))]

Recalling the Laplace transform of unit-step function, we obtain the Laplace transform
1 1_ e—(a+k)s
L f t - = e—as _ e—a(+k)s — e—as
@)= y=e e —
The limit of this function as k goes to 0 is denoted by o(t —a)
and is called the Dirac delta function (sometimes the unit impulse function).

Now, let’ turn to the following equation again.
1 _ e—(a+k)s

-as _ e—a(+k)5) — e—as
ks

1
L f (t)j=—(e
=~
The quotient in this equation has the limit 1 as k goes to 0, as follows by 1’Hospital’s
rule.(Differentiate the numerator and the denominator at the same time with respect to k)

Thus,
L{o(t—a)}=e"*

We note that Dirac delta function is not a function in the ordinary sense as used in calculus,

but a so-called generalized function.

o If t=a 0
o(t-a)= and | S(t—a)dt=1
(t-2) {O otherwise -[0 (t-2)
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But an ordinary function which is everywhere 0 except at a single point must have the integral
0. Nevertheless, in impulse problems it is convenient to operate on Dirac delta function as if it

were an ordinary function.

Example: Response of a damped vibrating system to a unit impulse.
Determine the response of a damped mass-spring system governed by
y'+3y+2y=45(t-a), y(0)=0 y'(0)=0
Thus the system is initially at rest and the time t=a is suddenly given a sharp hammerblow.
Solution:
Taking Laplace transform we obtain
S?Y +3sY +2Y =™
Solving for Y, we have

1 1 1

Y (s) = F(s)e ™, where F(s)= G067 51l 512

Taking the inverse transform we obtain

ft)=e"'—-e™.

Hence by the second shifting theorem we have
0, if 0<t<a

y(®) = L'{e “F(s)}= f (t-a)u(t-a) = {e—«—w )

e?™, if t>a
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The Capacitor

The current through capacitor is proportional to the rate at which the voltage across the
capacitor varies with time, or, mathematically,
i~
dt
This gives the capacitor current as a function of the capacitor voltage. Expressing the

voltage as a function of current is also useful. To do so,

idt = Cdv
v(t) t
J-dV:iJ.Idt
v(t,) Cto

1t
v(t) = — |idt + v(t
(t) Ctj (to)

We can derive the power and energy relationships for the capacitor. From the definition of

power
] dv
=VvVi=Cv—
P dt

or

0= i{éj{:idtjtv(to)]

Combining the definition of energy with the first power equation above
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pzd—W:Cvﬂ
dt dt

dw = Cvdv

w \'
jdw = ijdv
0

0

W:le2
2

Example: The voltage pulse described by the following equation is impressed across the

terminals of a 0.5uF capacitor.
v(t) =0, t<0;
v(t)=4t V, 0<t<y
vt)=4e D v, 1<t<o,

Now, we will derive the expressions for the capacitor current, power, and energy and
sketch the graphs.
First of all, if we sketch the voltage graph using MathCad we get the following result.

Here we used unit step function to express all the intervals in one step.

V(1) =4t(0 (1) - 0 (t- 1))+ 4e " 0 (t- 1)

v(t)

a) Using the following formula we can derive the current equation from voltage equation.
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. dv
t)=C—
(t) o

i(t) =0 fort<0
i(t)=c%=(0.5x10—6)%=05u1? x 4 = 2ud for 0<t<1

dv

. 6 d(4e~(1)y
i()=C— =(05x10%) =/
(t) " (05x107°) J

26 g for 1<t<w

And the graph of this current is seen below.
i(t) =20 (1) - & (t-1)) - 2"V o (1= 1)

i(t) 0

b) Now let’s find the power equation. If we remember the formula

) dv
=Vvi=Cv—,
P dt
we can easily derive the power.
p=0 fort<0
p=4txi(t)=4tx2 =8tuW for0<t<1

p=4e N (—2e7 D)= gDy for 1<t<mo

So, the power graph:
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p(t) :=81(0 (1) = d (t- 1)) - 8e 2"V g (t- 1)

10
8

p(t) 0

-10

c) And the energy equation can be derived from the following equation.

WZECVZ
2
w=0 fort<0
1 2 .2
W_E(O'5)16t =4t uJ forO<t<1

W= %(05 )168_2(t_1) = 4e_2(t_1),u.] for 1<t<oo

Finally, the energy graph is
w(t) =44%(0 (1) = © (t- 1)) + 4e 2D g (1o 1)

w(t) 2
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Energy is being stored in the capacitor whenever the power is positive. Hence energy is being

stored in the interval 0 to 1 s.

Energy is being delivered by the capacitor whenever is the power is negative. Thus energy is

being delivered for all t greater than 1 s.

Inductor

A current change through an inductor results in a voltage on the inductor and this voltage is

given by

v:Lﬂ
dt

v is measured in volts, L in henrys, | in amperes, and t in seconds.

Current in an Inductor in Terms of Voltage

vdt = L[ﬂjdt
dt

vdt = Ldi
L _I(t)dx zjtvdr
i(t,) t,

i(t)=%jttvdr+i(to)
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In many practical applications to is zero so the equation becomes
. 1t .
i(t)= Ejovdr +1(0)

Power in an Inductor

p=vi

P dt

We can also express the current in terns of voltage

p= V|:% Jpvar + i(to)}

But the first equation is most useful in expressing the energy stored in the inductor.

Energy in an Inductor

Power is the time rate of expending energy, so

_dw_ | di
dt dt
dw = Lidi
i
_[ dx = Ljo ydy
w==Li?

We use different symbols of integration to avoid confusion with the limits placed on the

integrals. The energy is in joules when inductance is in henrys and current is in amperes.

Example:
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The independent current source in the circuit generates zero current for t<O and a pulse
i(t) =10te™" t>0.
a) Sketch the current waveform
b) At what instant of time is the current maximum?
c) Express the voltage across the terminals of the 100 mH inductor as a function of time.
d) Sketch the voltage waveform
e) At what instant of time does the voltage change polarity?
f) Find the power equation and sketch the power waveform.

Dy

T

a) The current waveform is shown below, which was obtained using MathCad.

b) If we take the derivative of i(t) and making what we get equal to zero, we find the

maximum of the current.

di _d@ote™) 10(-5te™ +e™') =10e™ (1-5t)

dt dt
10e™'(1-5t) =0
t= i =0.2s

5

51



V= L% =(0.1)(10e™")(1-5t) =e > (1-5t) V,t >0 v=0,t <0

d) Using MathCad, if we sketch v(t) = e (L—5t) we get the following result.

v(t)

-0.5

0 0.5 1
0 t 1.2

e) If we notice, we see that at t=0.2 s the voltage changes polarity. This is the instant when

current is maximum.

f) p(t) =i(t).v(t) =10te " —50t%e " W

0.2
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Series RLC Circuit

() =

In the RLC circuit in the figure above, the voltage drops across the inductor, resistor, and
; t

di _.
capacitor are given by L— Ri and i_fi(r)dr
dt C3

Kirchhoff’s voltage law states that the sum of voltage drops across the individual components

equals the impressed voltage, E(t). So,

di 1]
LR +E.c|;|(r)dr = E(t)

t
Setting Q(t) = _[i(T )d7 (the charge of the condenser), and i = %—? We can write

0

2
Ld—Q+ Rd—Q+9: E(t)
dt? dt C

So, this is the basis for this kind of electrical problems.
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SECTION 3



Laplace Transforms in Electric Circuit Analysis

In this section, we will see how we face integro-differential equations in electric circuit
analysis and how we will explain in examples how we solve those equations using Laplace
transforms. In fact, solving those equations doesn’t require a deep information about Laplace
transforms. Having an idea about basic formulas would be enough. Interestingly, we will not need

even those formulas in the last section to solve those problems.

Example 1: Finding general current equation for series RL circuit with a constant E

Let's take a look to the circuit seen below. We can easily write its voltage equation through

Kirchhoff laws. And if we want to see its current equation, or in other words, if we want to see the
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behavior of current in this circuit in a mathematical way, the following mathematical operations

will lead us to the answer.

E:Lﬂ—f—iR
dt

Take the Laplace transform of both sides of this equation.
L{E}= L{Lﬂ}+ L{iR}
dt
E i
— =L(sl(s)+i(0))+ I(s)R
S

Assume i(0)=0

Use partial fraction

A and B are found in the following way.
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Make s=0in (3) to annihilate B, then A:%. Make s:—% in (3) to annihilate A, then
B= —% . Put the values of A and B into (2),
RN R SRS
LR
S+—

e

Example 2: General Current Equation in series RL circuit with a varying Eosinwt voltage

Suppose that the current i in an electrical circuit =~ & ——M— VY — .
satisfies N

L9 Ri — Egsin ot Dema w2

where L,R,Eo and w constants. Find i(t) for t>0 if i(0)=0. Taking the Laplace transform
E()C{)

Lsl{i(t)}+ RL{i(t)} = ——

2w
that is,

an)

L= (Ls + R)(S2 + w?)

Considering partial fractions

. Eqw/L A Bs+C
Li©y=—-7" =—Rt2. 2
(S+L)(52+a)2) S+ " ta

and we find that
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A y ] 1
L’w? + R? L’w? + R? L’w? + R?
and so
— "t
(t)= 2E02La)2 L 2520 >sin ot ———3—— cos ot
L“w° +R L“w»° +R L“w° +R

Example 3: Finding the General Current Equation in series LC circuit

Suppose that the current i in the electrical circuit beside

satisfies N
di 1 et e .
- — — 5 ——[§ o o o © o o a o 8o a a 1
dt+C OI(T)dT E, T CoT
where L, C and E are positive constants, i(0)=0. Then N I _
LSL{I (t)} L{l (t)} E ..................
sC S
L{i (t)}( Ls+ _j L{i (t))LLCHJ _E
C S
implying

L) =—s :
LCs? +1 L(s +1/LC)

. L. 1
|(t):E\/gsm\/Et

And inverse Laplace of both sides
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So, setting some values we can see the current behavior graphically. Let’s see it theoretically

in MathCad first and then compare the result with the one we obtained in PSpice.

E =10 L= =35

-3
i) =10. /5-10 _sin !
=10 A5107% 5.0

400

0

it 0

=200

- 400
a0 0.z 04 0.6 0.g

The circuit in PSpice is the following one.

And the current through inductor is seen below.
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Example 4: Response of an RC-circuit to a single square wave

wit)
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The equation of the circuit is
aqt) _ 1 _
Ri(0)+-" Rl(t)+ELl(z-)dz-—v(t)

where v(t) can be represented in terms of two unit step functions.
v(t) =V, [u(t —a) —u(t —b)]
Then we have
. 1 .t
Ri (t) +ELI(r)dr =V, [u(t—a)—u(t—b)]
If we take Laplace transform of both sides of the equation
RI (S) I (S) VO (e—as _ e—bS)

1 0 —as —bs
I(s)[R+Ej=?(e e )

|(S) LVO ( —as _ e—bS)
(sRC+1) s
V /R —as —bs
1(s) =———(e™" —e™)
S+ —
RC
Now, using inverse Laplace transform we can find i(t).
i(t)=L" %eas — Lt %ebs
S+ —— S+ ——
RC RC

If we remember that

L—l[ A e—asj — Ae—B(t—a)u(t o a)

s+B
So,
_ —(t a)/RC V —(t b)/RC
it)=— u(t—a)- R u(t —b)
that is,
0] , t<a
i(t) =< MeVR¢ , a<t<b
(M-N)e"® | t>b
where
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ift)

-10

M=-Ce¢
R
N _VO eb/RC
I
|
a b

10
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Verifying the mathematical result using PSpice.

:;:'/@::m:
Ay

. 1K
Ry
)
. ol
& | ]
11
I 1 | o U{R1:1)

This is our circuit in PSpice. At first, we measure the input signal by putting the ground next

to impulse generator. The input signal is seen on the right side.

3;/@33“3
AUvY

. 1K
L
()
o1 .
| | -
11
1UF ::J_?EI:

So now, we are ready to measure the output signal. We change the place of the ground and get

the response of the circuit to this input signal.
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Example 5: Find voltage and current equations in R series to parallel LC circuit.

|
s
Pt T
N
CooE Tl
|1
LA
&=

All the initial currents in this circuit is zero at t=0.
-Derive the integro differential equation that governs the behavior of the circuit.

-Show that V,(s) = V/RC

sP+ s+
RC LC

-Show that 1,(s) =

-Find Vo(t) and io(t) for t>0 for the following values.
V=35V, R=5Kohm, L=200mH, C=0.1uF

and plot the graph for those values in MathCad.

-Plot the graph of the circuit in PSpice and see if they are in accordance with those in MathCad.

-Derive the integro differential equation that governs the behavior of the circuit.

If we assume that the total current which flows through R is ‘1’
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V=Ri+v,= R, +i.)+v,

1 v
F=R{— odf + 2+
(7 [ v+ =20+,

RCdv,
dt

_E

= + v
L

_E""adf +

=

-Find the Laplace transform of voltage equation.

oRY
& sL
4
E = VG(S:'[£+RCS +1]: VG(S:I R+ RICs <+ 510
& 5L I
Va (5':' = RIS QL-:E-?SL R = Ll‘.}; 1
Rgc[sﬂ +_S+_]
R o
V (s) = Vi RC
i 2 1 i
S+ —5+—
R LC

Find output voltage equation for the following values and plot the graph for those values in MathCad..

First we write v(s) for the specified values. Then following Symbolics->Transform->Inverse

Laplace combination (make sure that the cursor is next to 's' during this operation) we get the

result in t domain. Then using this result in our Vo(t) function, we plot the graph.
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710"

w(s) =

2 r210eq 510
10-exp( - 1000-£) -sing 7000-£)

Va(t) :=10-exp( - 1000 1) -sing 7000 1)

10

Talt) 0

-10
0 000l 0.002 0.003 0.004 0.005
t

Plot the voltage graph of the circuit in PSpice and see if it is in accordance with those in MathCad

This is our circuit in PSpice with the specified values. So, for the values given, the output
voltage graph we obtained inPspice is seen below. And it is total in accordance with what we

obtained in MathCad in a pure mathematical approach.

Note: Notice that the value of capacitor is 0.1uF. In Pspice .1 and 0.1 are the same.

F
o C R
T T IR
%35u........DL. N
. npmH C o uF
1

Vo(t) Of the circuit in PSpice:
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General Solution for Vo(s)

Now, we will inverse Laplace this equation. We have to use partial fractions. But we have to

separate the denominator first. If we find the roots of denominator;
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1 1
———.fA ——+.JA
R a 1 NIy ReT 1 /N
& = == - . 8y = = +
2 2RC 2 2 2R 2
50,
v o)=L 1 v A N B
ROl gy Loy L] RO 1 W 1 W&
RU LU ZRC 2 2RO 2
here,
1 1
=———, b= 50,
A i
F -1 1
V,is)= +
RCAJB 1 AfA 1 A
st—m+— st+—m——
2RC 2 2RC 2
We can inverse Laplace the equation now.

1 4

v ﬁc*‘?} ZRC

v ({)=——|—¢ +e
RGA

v_(f) p2RC| g2 _p 2

~ "‘I'E:r __"'IE e - ﬁ
e ROA T2

Find the current lo(s)

The total voltage is the sum of the voltage on R and on the parallel LC branch. We can
express total current in terms of two currents. The current which flows through L and the current
which flows through C

dt
Since they are parallel to each other, the voltages on C and L are equal

Vo do g gl o SO
dt dt
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di

v, =L—
dt
di Cd(Lgtloj di LCd ?i
V=L Rl B B g 0
dt dt dt
- 2.
vl g +—RL§: '

We can transform both sides now.

V_ sLI,(s)+RI,(s) +RLCS?I,(s) = Io(s)(sL+ R+ RLCSZ)
S

\ V/RLC
s(sL+R+RLCs ) ds2, 1, 1
RC LC

Find inverse Laplace of lo(s) for the given values in MathCad and Plot the graph of io(t)

|
|'|
g
~
T
|
1

© R

To remember the values We put the circuit here again. If we calculate lo(s) with those values.
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330000000
(s + 30000000 4 2000 5

i(s)

7~ Teexp( - 1000-t) -cos(70004) — exp(- 1000 £) -sin 7000 )

Wty =7 — Toexp- 1000 t) -cos 7000t — expr - 1000 -£) -sin 7000 )

10

(L)

0.002 0.003 0004 0.005

o001

Now, let’s plot the graph of io(t) in PSpice.

=~ ASenezstoParallel-LC [active]

[k
=

cooodoooo

coocoboooo

cooodoooo

coocoboooo
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Summary of the Project

So, the basic aim of this project was to learn Laplace Transforms and to get the skill to

apply them to electric circuit analysis.

Step by step, we tried to reach this aim. First, we discussed the basic mathematical
properties of Laplace transforms. Then, we tried to remember our electric circuit
information. And these two different subjects were combined in the second and third
section of Laplace Transforms. We tried to show the relation of the two with examples.

And in the solution we followed a very specific way.

This specific way can be explained as follows.
e Find the mathematical solution
e  See the result of the solution graphically using a computer tool (Like MathCad or

Mathematica)

o Draw the circuit in an electric analysis program and find the output experimentally.

o Compare the results.
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